

EM32DX-E4 模块用户手册

Version 3.1

2020年04月14日

©Copyright 2018 Leadshine Technology Co., Ltd.

All Rights Reserved.

本手册版权归深圳市雷赛控制技术有限公司所有,未经本公司书面许可,任何人不得翻印、 翻译和抄袭本手册中的任何内容。

本手册中的信息资料仅供参考。由于改进设计和功能等原因, 雷赛公司保留对本资料的最 终解释权, 内容如有更改, 恕不另行通知。

修改记录

松か口間	и ⊏ →	修改说明		+ni Æd I
修改日期	版本	原来内容	更新内容	拟制人
20181101	V3. 0		初版	产品部
20200414	V3. 1		重新排版	产品部

调试机器要注意安全!用户必须在机器中设计有效的安全保护装置,在软件中加入出错处理程序。否则所造成的损失,雷赛公司没有义务或责任负责。

目 录

第 1 章 产品概述	5
1.1 产品简介	5
1.2 产品特点	5
1.3 技术规格	5
1.4 安装使用	6
第 2 章 产品外观及硬件接线	7
2.1 产品外观	7
2.2 接口分布及针脚定义	7
2.2.1 电源接口	9
2.2.2 EtherCAT 接口定义	9
2.2.3 IO 接口定义	9
2.3 接口电路	10
2.3.1 通用输入信号接口	10
2.3.2 通用输出信号接口	11
第3章 指示灯定义及说明	14
3.1 指示灯定义	14
3.2 指示灯闪烁规则	14
3.3 指示灯状态	15
第 4 章 功能说明	18
4.1 通用输入功能	18
4.2 通用输出功能	18
第5章 对象字典	19
5.1 通用参数	19
5.2 参数设置	20
5.2.1 IN 读取	20
5.2.2 IN 计数参数设置	20
5.2.3 OUT 设置输出	22
5.2.4 输出状态保持参数设置	22
5.2.5 延时翻转参数	22

第6章	使用指南	-24
6.1 IEC	示例	-24
6.1.1	硬件连接	-24
6.1.2	EtherCAT 主站的添加及配置	-25
6.1.3	模块的添加	-29
6.1.4	模块的配置	-33
6.1.5	应用例程	-34
6.2 BAS	IC 示例	-37
6.2.1	硬件连接	-37
6.2.2	EtherCAT 主站的添加及配置	-38
6.2.3	模块的添加	-39
6.2.4	模块的配置	-44
6.2.5	应用例程	-45
6.3 控	制卡示例	-47
6.3.1	硬件连接	-47
6.3.2	从站 ID 设置	-47
6.3.3	组建 EtherCAT 网络	-47
6.3.4	应用例程	-48

第1章 产品概述

1.1 产品简介

雷赛 EM32DX-E4 模块是一款基于 ASIC 技术的高性能、高可靠性的 EtherCAT 总线 IO 扩展模块,具有 16 路通用输入接口和 16 路通用输出接口。输入输出接口均采用光电隔离和滤波技术,可以有效隔离外部电路的干扰,以提高系统的可靠性。

EM32DX-E4主要用于与雷赛公司的支持 EtherCAT 总线通讯的控制卡和控制器配套使用。

1.2 产品特点

- ① 16路通用输入:提供光电隔离、抗干扰滤波。
- ② 16 路通用输出:提供光电隔离、抗干扰滤波。
- ③ 内部 24V 隔离电源, 具有直流滤波器。
- ④ 插拔式接线端子,立式安装。

1.3 技术规格

EM32DX-E4 IO 扩展模块的主要规格指标如下:

表 1.1 EM32DX-E4 规格指标

	输入特性	输出特性		
IO 端子排	直插	IO 端子排	直插	
输入通道数	16 路	输出通道数	16 路	
指示灯	RUN 指示	示灯、L/A 指示灯、	ERR 指示灯	
输入类型	低电平输入有效	输出类型	漏型输出,低电平有效	
输入电压	21~27V DC	负载电压	5~24V DC	
额定输入电压	24V DC	输出电流	300mA/通道	
最大连续电压	30V DC	漏电流	最大 8uA/通道	
浪涌	35V DC, 500ms	浪涌电流	2A, 100ms	
导通电流	≥3.5mA(<5V)			
关断电流	<1.5mA(>19V)			
光隔离	500V AC, 1 Minute	光隔离	500V AC, 1 Minute	
隔离组数	16 组,单独隔离/通道	隔离组数	16 组,单独隔离/通道	

运行环境				
环境温度	水平安装: 0~55 ℃			
	垂直安装: 0~45 ℃			
相对湿度	95%无凝结			
	运输/存储环境			
运输/存储温度	-20 ~ 70 °C			
自由落体	0.3 m, 5 次,产品包装			
相对湿度	95% 无凝结			
	电磁兼容性			
静电放电 EN	±8 kV,对所有表面的空气放电			
61000-4-2	±4 kV,对暴露导电表面的接触放电			
快速瞬变脉冲	±2 kV,5 kHz,到交流和直流系统电源的耦合网络			
EN 61000-4-4	±2 kV, 5 kHz, 到 I/O 的耦合夹			

1.4 安装使用

EM32DX-E4 模块采用底板定位孔的方式安装,安装尺寸如图 1.1 所示。

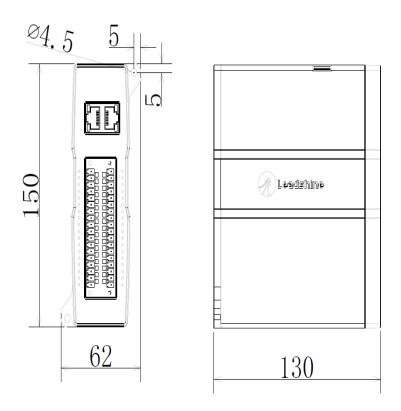


图 1.1 模块安装尺寸图

第2章 产品外观及硬件接线

2.1 产品外观

EM32DX-E4 IO 扩展模块提供 16 路输入接口、16 路输出接口,带有两个立式 RJ45 型 EtherCAT 扩展口,产品外观如图 2.1 所示。

图 2.1 EM32DX-E4 产品外观图

2.2 接口分布及针脚定义

EM32DX-E4 IO 扩展模块硬件接口分布如图 2.2 所示, 其接口定义表如表 2.1 所示。



图 2.2 EM32DX-E4 硬件接口分布图

表 2.1 接口功能简述

名称	功能介绍	
电源接口	直流 24V 电源输入	
ECAT IN	EtherCAT 总线 IN 接口	
ECAT OUT	EtherCAT 总线 OUT 接口	
输入接口	数字量输入端口	
输出接口	数字量输出端口	

2.2.1 电源接口

电源接口为 24V 电源输入接口,标有 24V 的端子接+24V,标有 0V 的端子接外部电源地。 PE 为外壳地接口。

2.2.2 EtherCAT 接口定义

接口 ECAT IN、ECAT OUT 是 EtherCAT 总线接口,采用 RJ45 端子,其引脚号和信号对应关系见表 2.2 所示:

ECAT-IN 信号	信号描述	ECAT-OUT 信号	信号描述	说明
1	TX+	1	TX+	发送信号+
2	TX-	2	TX-	发送信号-
3	RX+	3	RX+	接收信号+
4	NC	4	NC	保留
5	NC	5	NC	保留
6	RX-	6	RX-	接收信号-
7	NC	7	NC	保留
8	NC	8	NC	保留

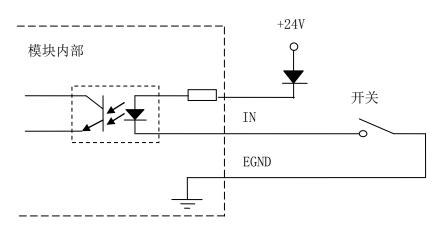
表 2.2 接口ECAT IN、ECAT OUT引脚号和信号关系表

2.2.3 IO接口定义

IO 接口表示 16 路通用输入(IN0-IN15)和 16 路通用输出(OUT0-OUT15),对应的引脚分布如表 2.3 所示:

序号	丝印	功能说明	序号	丝印	功能说明
1	IN00	通用输入口0	2	OT00	通用输出口0
3	IN01	通用输入口1	4	OT01	通用输出口1
5	IN02	通用输入口2	6	OT02	通用输出口2
7	IN03	通用输入口3	8	OT03	通用输出口3

表 2.3 输入输出接口定义

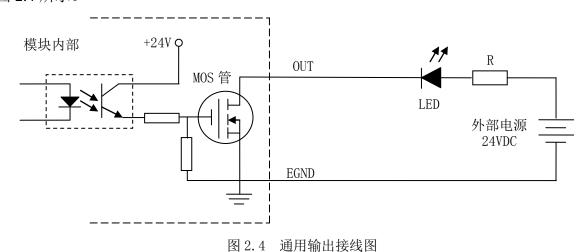


35	0V	24V 电源地	36	0V	24V 电源地
33	IN15	通用输入口 15	34	OT15	通用输出口 15
31	IN14	通用输入口 14	32	OT14	通用输出口 14
29	IN13	通用输入口 13	30	OT13	通用输出口13
27	IN12	通用输入口 12	28	OT12	通用输出口 12
25	IN11	通用输入口 11	26	OT11	通用输出口 11
23	IN10	通用输入口 10	24	OT10	通用输出口 10
21	IN09	通用输入口9	22	OT09	通用输出口9
19	IN08	通用输入口8	20	OT08	通用输出口8
17	0V	24V 电源地	18	0V	24V 电源地
15	IN07	通用输入口7	16	OT07	通用输出口7
13	IN06	通用输入口 6	14	OT06	通用输出口 6
11	IN05	通用输入口 5	12	OT05	通用输出口 5
9	IN04	通用输入口4	10	OT04	通用输出口4

2.3 接口电路

2.3.1 通用输入信号接口

EM32DX-E4 IO 扩展模块为用户提供 16 路通用数字输入接口,用于开关信号、传感器信号或其它信号的输入。其接口电路加有光电隔离元件,可以有效隔离外部电路的干扰,以提高系统的可靠性。其输入接口接线图如图 2.3 所示:


图 2.3 通用输入接线图

2.3.2 通用输出信号接口

EM32DX-E4 IO 扩展模块为用户提供了 16 路通用数字输出接口,由 MOS 管驱动,单路输出电流可达 0.3A,可用于对继电器、电磁阀、信号灯或其它设备的控制。其接口电路都加有光电隔离元件,可以有效隔离外部电路的干扰,提高了系统的可靠性。输出电路采用 OD 设计,上电默认 MOS 管关断。模块通用数字输出信号控制常用元器件的接法如下:

(1) 通用发光二极管

通用数字输出接口控制发光二极管时,需要接一限流电阻 R,限制电流在 10mA 左右,电阻值大约在 2K 到 5K 左右,根据使用的电源来选择,电压越高,使用的电阻值越大些。接线图如图 2.4 所示。

(2) 灯丝型指示灯:

通用数字输出端口控制灯丝型指示灯时,为提高指示灯的寿命,需要接预热电阻 R,电阻值的大小,以电阻接上后输出口无输出时,灯不亮为原则。接线图如图 2.5 所示。

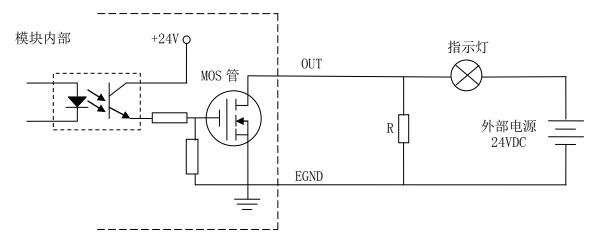


图 2.5 通用输出接线图

(3) 小型继电器:

继电器为感性负载,当继电器突然关断时,其电感会产生一个很大的反向电压,有可能击穿输出 MOS 管,模块内输出口有续流二极管,以保护输出口 MOS 管。继电器接线图如图 2.6 所示。

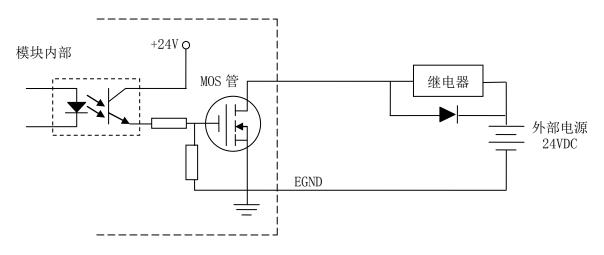


图 2.6 通用输出接线图

注 意: 在使用通用数字输出端口时,切勿把外部电源直接接至通用数字输出端口上,否则会造成 MOS 管损坏。

第3章 指示灯定义及说明

3.1 指示灯定义

EM32DX-E4 IO 扩展模块的指示灯包括连接/状态灯(L/A)、运行灯(RUN)、报警灯(ERROR)。如图 3.1 所示:

图 3.1 EM32DX-E4 网口形态

其中 L/A 为网络连接/状态灯, RUN 为 RUN 灯, ERR 为 ERROR 灯。

3.2 指示灯闪烁规则

所有指示灯的闪烁都遵循如图 3.2 所示的闪烁规则。

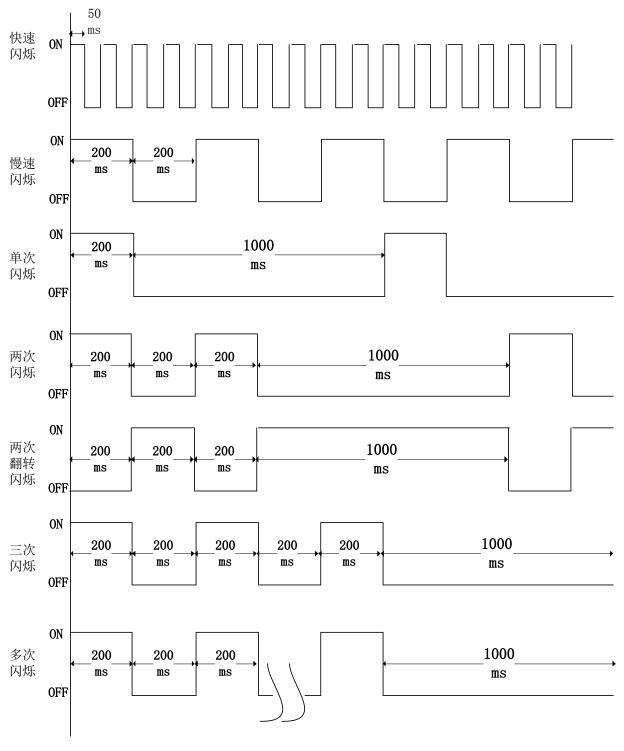


图 3.2 指示灯闪烁规则

3.3 指示灯状态

L/A 灯闪烁状态及所代表的含义如表 3-1 所示:

表 3-1 L/A 灯闪烁状态及含义

指示灯状态	状态描述	要求
常亮	端口打开	必备
快速闪烁	端口打开	必备
常灭	端口关闭	必备
两次翻转闪烁	端口关闭(模式需要手动打开)	可选
单次闪烁	本地 PHY 自动协商错误	可选
两次闪烁	远端 PHY 自动协商错误	可选
三次闪烁	位置 PHY 自动协商错误	可选

RUN 灯闪烁状态及所代表的含义如表 3-2 所示:

表 3-2 RUN 灯闪烁状态及含义

指示灯状态	连接状态	要求
常灭	设备处在初始化状态	必备
慢速闪烁	设备处在与操作状态	必备
单次闪烁	设备处在安全操作状态	必备
常亮	设备处在操作状态	必备
快速闪烁	设备正在启动,还没进入到	可选
	初始化状态或者设备处在	
	bootstrap 状态,正在下载固	
	件	

ERROR 灯闪烁状态及所代表的含义如表 3-3 所示:

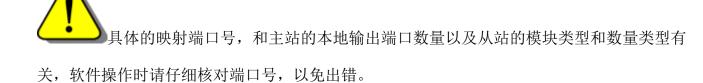
表 3-3 ERROR 灯闪烁状态及含义

指示灯状态	连接状态	要求
常亮	典型通讯错误或者应用控制出错	可选
多次闪烁	保留	必备
三次闪烁	保留	必备
两次闪烁	应用程序看门狗超时	必备
单次闪烁	由于本地错误,从站设备自动改为	必备

	EtherCAT 状态	
慢速闪烁	通用配置错误	必备
快速闪烁	启动错误	可选
常灭	正常通信	必备

第4章 功能说明

4.1 通用输入功能


•EM32DX-E4 提供 16 路通用输入功能,输入端口为 IN0 – IN15。能够检测外部信号的输入状态。

具体的映射端口号,和主站的本地输入端口数量以及从站的模块类型和数量类型有 关,软件操作时请仔细核对端口号,以免出错。

4.2 通用输出功能

• EM32DX-E4 提供 16 路通用输出功能,输出端口为 OUT0 – OUT15。能够控制和读取输出信号的状态。

第5章 对象字典

5.1 通用参数

索引	子索引	名称	数据类型	访问	描述
				属性	
1000Н	00Н	Device type	Unsigned32	ro	Device type and profile(设备类型)
					初始值: 0x0FFF0192
1001H	00Н	Error register	Unsigned8	ro	Error register (错误寄存器)
					初始值: 0x00
1008H	00Н	Device name	Vis String8	ro	Manufacturer's designation
					初始值: EM32DX-E4-V30
1009Н	00Н	Hardware	Vis String8	ro	Hardware version
		version			初始值: 3.1
100AH	00Н	Software	Vis String8	ro	Software version
		version			初始值: 3.2
1018H		Identity		ro	(设备信息)
	00Н	Largest	Unsigned8	ro	Largest sub-index supported » 04h
		sub-index			
	01H	Vendor ID	Unsigned32	ro	Vendor ID
					初始值: 0x00004321
	02Н	Product code	Unsigned32	ro	Product code
					初始值: 0x01400023
	03Н	Revision	Unsigned32	ro	Revision number
					初始值: 0x18050210
	04H	Serial number	Unsigned32	ro	Serial number
					初始值: 0x00000001

5.2 参数设置

5.2.1 IN 读取

索引	子索引	名称	数据类型	访问属性	描述
TxPD00 0	x1A00 : I	N			
6000Н	00Н	IN			
	01H	IN1	Unsigned16	ro	输入 0-15

5.2.2 IN 计数参数设置

6020H	00Н	INO 计数			
	01H	INO_SetCountMode	Signed32	r/w	初始值默认为 0
					设置 INO 的计数方式: 0 电平下
					降沿,1电平上升沿,
					2 电平任意沿
	02Н	INO_SetCountVal	Unsigned32	r/w	设置 INO 的计数值,初始值默
					认为 0
	03Н	INO_ReadCountVal	Unsigned32	ro	读取 INO 的计数值
6021H	00Н	IN1 计数			
	01H	IN1_SetCountMode	Signed32	r/w	
	02Н	IN1_SetCountVal	Unsigned32	r/w	设置 IN1 的计数值,初始值默
					认为 0
	03Н	IN1_ReadCountVal	Unsigned32	ro	读取 IN1 的计数值
6022Н	00Н	IN2 计数			
	01H	IN2_SetCountMode	Signed32	r/w	
	02Н	IN2_SetCountVal	Unsigned32	r/w	设置 IN2 的计数值,初始值默
					认为0
	03Н	IN2_ReadCountVal	Unsigned32	ro	读取 IN2 的计数值

6023Н	00Н	IN3 计数			
	01H	IN3_SetCountMode	Signed32	r/w	
	02H	IN3_SetCountVa1	Unsigned32	r/w	设置 IN3 的计数值,初始值默
					认为0
	03Н	IN3_ReadCountVal	Unsigned32	ro	读取 IN3 的计数值
6024Н	00Н	IN4 计数			
	01H	IN4_SetCountMode	Signed32	r/w	
	02Н	IN4_SetCountVal	Unsigned32	r/w	设置 IN4 的计数值,初始值默
					认为0
	03Н	IN4_ReadCountVal	Unsigned32	ro	读取 IN4 的计数值
6025Н	00Н	IN5 计数			
	01H	IN5_SetCountMode	Signed32	r/w	
	02Н	IN5_SetCountVal	Unsigned32	r/w	设置 IN5 的计数值,初始值默
					认为0
	03Н	IN5_ReadCountVal	Unsigned32	ro	读取 IN5 的计数值
6026Н	00Н	IN6 计数			
	01H	IN6_SetCountMode	Signed32	r/w	
	02Н	IN6_SetCountVal	Unsigned32	r/w	设置 IN6 的计数值,初始值默
					认为0
	03Н	IN6_ReadCountVal	Unsigned32	ro	读取 IN6 的计数值
6027Н	00Н	IN7 计数			
	01H	IN7_SetCountMode	Signed32	r/w	
	02Н	IN7_SetCountVal	Unsigned32	r/w	设置 IN7 的计数值,初始值默
					认为0
	03Н	IN7_ReadCountVal	Unsigned32	ro	读取 IN7 的计数值

5.2.3 OUT 设置输出

索引	子索引	名称	数据类型	访问属性	描述
RxPD00 0	x1600 : OU	T			
7000Н	00Н	OUT			
	01H	OUT	Unsigned16	rw	输出 0-15

5.2.4 输出状态保持参数设置

索引	子索引	名称	数据类型	访问属性	描述
7010H	00Н	OUT 状态保持			
	01H	OUT_KeepStateOnRes	Usinged8	r/w	设置复位时是否保持输出口状
		et			态:
					0 不保持 1 保持(设置信息会
					自动保存在 flash 中)

5.2.5 延时翻转参数

索引	子索引	名称	数据类型	访问属性	描述
7020Н	00Н	OUTO 延时翻转设置			
	01H	OUTO_SetMod	Unsigned32	r/w	设置是否启用延时翻转:
					0 不启用; 1 遇低翻转; 2 遇高
					翻转
	02H	OUTO_DelayTime	Unsigned32	r/w	设置输出端口延时翻转时间
					(范围: 0-100000,单位 ms)
7021H	00Н	OUT1 延时翻转设置			
	01H	OUT1_SetMod	Unsigned32	r/w	设置是否启用延时翻转:

					0 不启用; 1 遇低翻转; 2 遇高
					翻转
	02H	OUT1_DelayTime	Unsigned32	r/w	设置输出端口延时翻转时间
					(范围: 0-100000, 単位 ms)
7022H	00Н	OUT2 延时翻转设置			
	01H	OUT2_SetMod	Unsigned32	r/w	设置是否启用延时翻转:
					0 不启用; 1 遇低翻转; 2 遇高
					翻转
	02H	OUT2_DelayTime	Unsigned32	r/w	设置输出端口延时翻转时间
					(范围: 0-100000, 单位 ms)
7023Н	00Н	OUT3 延时翻转设置			
	01H	OUT3_SetMod	Unsigned32	r/w	设置是否启用延时翻转:
					0 不启用; 1 遇低翻转; 2 遇高
					翻转
	02H	OUT3_DelayTime	Unsigned32	r/w	设置输出端口延时翻转时间
					(范围: 0-100000, 单位 ms)

第6章 使用指南

雷赛数字输入输出模块 EM32DX-E4 符合 EtherCAT 标准,是一个标准的 EtherCAT 从站,通过 EtherCAT 总线端口可以支持 EtherCAT 总线主站的扩展使用,如雷赛 DMC-E3032 控制卡、雷赛 SMC600-IEC 系列控制器、PMC300 系列控制器、BAC300 系列控制器和 PAC 系列运动控制器。以下分别以 DMC-E3032 控制卡、SMC606-IEC 和 BAC332E 运动控制器作为主站和 EM32DX-E4 作为从站配合使用为例介绍从站的使用方法。其中 DMC-E3032 控制卡使用 C#编程, SMC606-IEC 示例使用 IEC 编程方式,BAC332E 示例使用 BASIC 和 API 编程方式。

6.1 IEC 示例

6.1.1 硬件连接

雷赛 SMC606 控制器的外形如下图 6.1 所示:

图 6.1 SMC606 外形

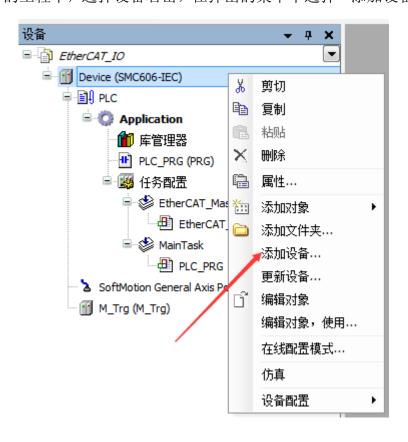
该控制器采用 24V 直流电源供电,具有 1 路 EtherCAT。该控制器的 EtherCAT 端口信号如表 6.1 所示:

EtherCAT 信号	信号描述	说明
1	TX+	发送信号+

表 6.1 接口引脚号和信号关系表

2	TX-	发送信号-
3	RX+	接收信号+
4	NC	保留
5	NC	保留
6	RX-	接收信号-
7	NC	保留
8	NC	保留

各端口的详细描述请参考 SMC600 系列运动控制器 (IEC 版) 用户手册。


设备间的连接:通过超五类带屏蔽层的网线将 SMC606 的 EtherCAT 口与 EM32DX-E4 的 ECAT IN 口连接。

模块上的拨码开关,采用出厂默认配置。

6.1.2 EtherCAT 主站的添加及配置

在IEC Studio中,先创建一个使用SMC606控制器的应用工程(详细的创建过程请参考《雷赛SMC IEC Studio使用手册》)。

在已经创建好的工程中,选择设备右击,在弹出的菜单中选择"添加设备",如图6.2所示:

图 6.2 添加设备

在弹出的窗口中选择"现场总线"=>"EtherCAT"=>"EtherCAT Master", 然后点击添加设备, 如图6.3所示:

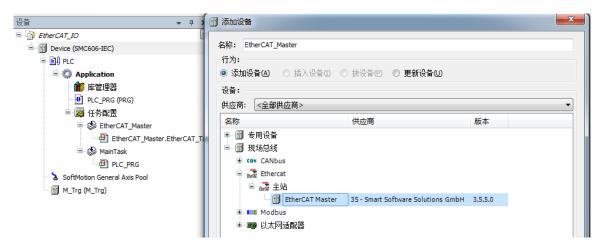


图 6.3 添加 EtherCAT 总线

EtherCAT 任务配置: 需将 EtherCAT 任务设置为最高优先级,将总线任务放在主任务中。如图 6.4 所示:

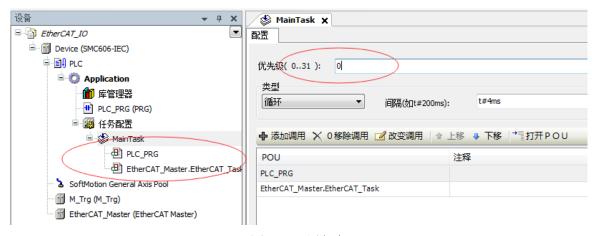


图 6.4 配置任务

注意: EtherCAT 任务与带运动模块的任务必须在同一个任务下,且为最高优先级。

主站配置: 双击设备列表 EtherCAT 主站, 弹出主站设置界面, 如图 6.5 所示主站界面:

(1) 通用界面 (General):



图 6.5 主站界面

主动配置主站/从站:主从站地址的配置方式。勾选此项,添加的主从站会自动配置地址。 采用默认设置即可。

网络名称:采用默认设置,设置为 eth1。

总线周期时间(Cycle Time): 总线控制器支持 250us、500us、1ms、2ms、4ms 总线周期(根据总线控制器所带的负载而定),用户根据连接从站数量的多少选择合适的总线周期;

同步偏移(Sync Offset):该值配置范围为 1~50,采用默认设置(默认值为 1)。该参数推荐值为 1 和 20。

诊断信息: 用于实时显示主站的当前状态信息。如果显示"All slaves done!",则表示主站配置已经完成,总线上所有从站为"操作状态",如图 6.6 所示:

È站 🗯 Et	herCAT I/O映射	145× 1	信息		
END - ED	nerCAT I/O映射		1言思		
☑ 自动配	置主站/从站				EtherCAT.
EtherCAT NIC	设置				
目的地址 (MAC)		FF-FF-FF	-FF-FF	☑ 广播	□ 激活冗余
源地址(MAI	E)	00-00-00	-00-00	浏览	
网络名称		eth1	-//-	AV	
○ 根据MA	C选择网络		根据名称选	择网络	
分布式时钟			选项		
周期时间	2000	- ⊔s	100000000000000000000000000000000000000	LRW 代替 LWR/LR	D
同步偏移	50	ψ μs		个任务中激活消息	
		¥ 70		重启从站	11.00
同步窗口	1	- ↓ µs			
	_	A bo			

图 6.6 在线模式显示诊断信息

(2) 状态界面 (Status):

在线模式下,状态界面处于观测状态,指示 EtherCAT 总线运行状态,如图 6.7 所示:

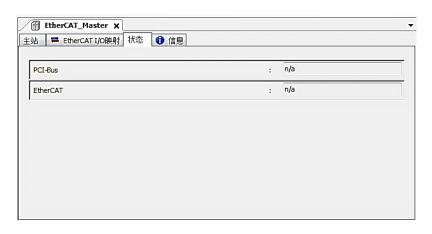


图 6.7 主站状态界面

(3) 信息界面 (Information):

信息界面主要显示 EtherCAT 主站名称、厂商、类型、ID、版本及描述等信息,如图 6.8 所示:

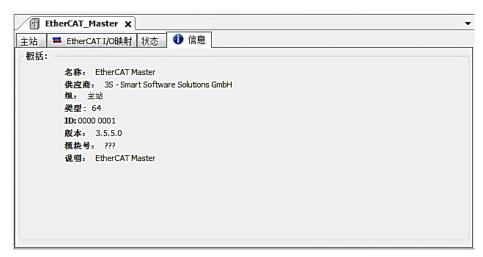


图 6.8 主站信息界面

6.1.3 模块的添加

在 Studio 中,添加 EtherCAT 从站模块有两种方式: 手动添加方式和自动扫描方式。无论使用哪种方式,在添加从站之前,设备库中必须已经具有该设备(如果没有,请先添加该设备,具体的添加步骤请参考《雷赛 SMC IEC Studio 使用手册》)。

(1) 手动添加模块

选择 EtherCAT_Master, 右击选择"添加设备"如图 6.9 所示, 在弹出的窗口选择"EtherCAT" => "从站" => "EM32DX-E4" 然后点击添加设备。如图 6.10 所示。

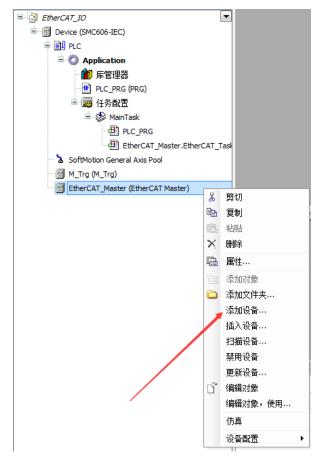


图 6.9 添加设备

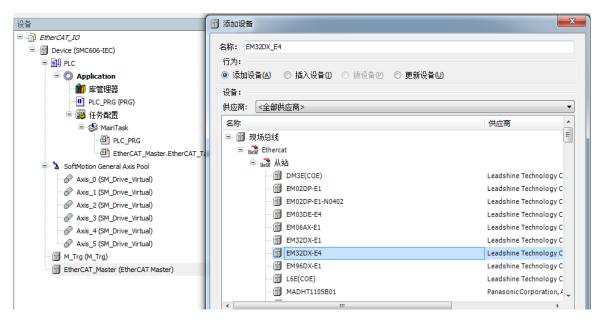


图 6.10 添加 EM32DX-E4 模块

(2) 自动扫描添加设备

首先,双击"Device",选择"扫描网络",选择扫描出的设备后,点击"确定",此时 Studio已与控制器建立通讯,如图 6.11 所示:

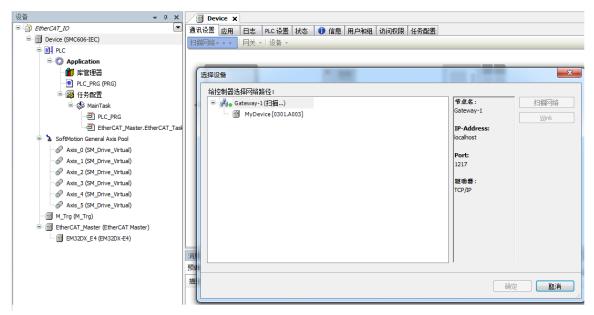


图 6.11 扫描网络

将当前应用工程下载到控制器中,然后,右击"EtherCAT_Master"选择"扫描设备",如图 6.12 所示:

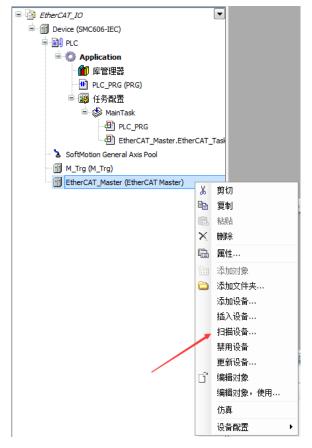


图 6.12 扫描设备

得到如图 6.13 所示设备列表,点击"复制所有设备到工程中",左侧设备列表会自动添加扫描出来的从站,如图 6.14 所示。

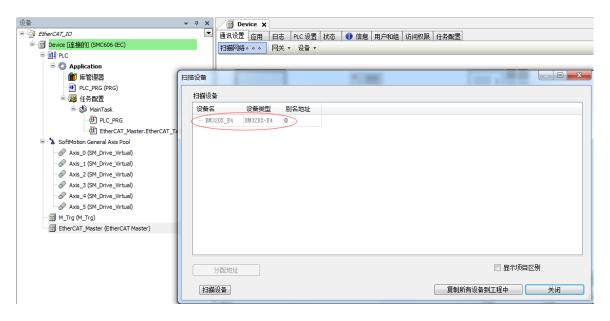


图 6.13 扫描网络

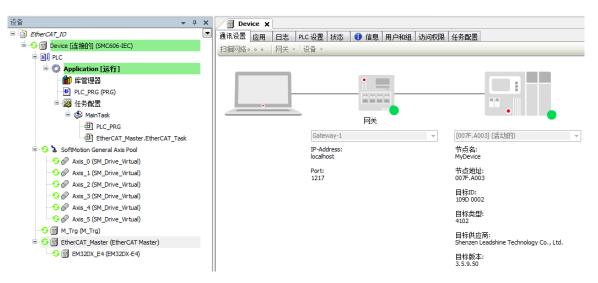


图 6.14 添加从站完成

6.1.4 模块的配置

双击左侧设备列表 "EM32DX-E4",可以看到从站的参数配置界面,如下图 6.15 所示。

图 6.15 EM32DX-E4 参数配置界面

点击 "EtherCAT I/O 映射"子页面,如下图 6.16 所示。该界面用于配置模块的输入输出参数,具体的用法请参考下一节。(注意:右下角的循环方式选择"ENABLE 2")

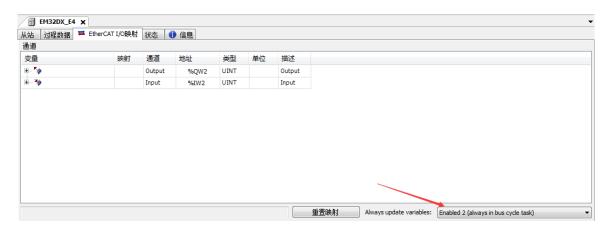


图 6.16 从站 I/O 映射配置界面

6.1.5 应用例程

(1) 程序功能:

在 SMC606 控制器上实现对 EM32DX-E4 模块的 IN0 读取, OUT0 输出控制。

- a. 当 IN0 指示灯亮(低电平)时,该模块的 OUT0 指示灯亮(低电平);
- b. 当 IN0 指示灯不亮(高电平)时,该模块的 OUT0 指示灯也不亮(高电平)。

(2) 需要的资源:

"SMC606"库

(3) 工程源码:

EtherCAT 扩展- "EtherCAT_IO"。

(4) 编辑程序如下:

- a. 在工程中调用总线控制器 SMC606 的 IO 数据处理模块 PD606_IO_Cmd。
- b. 声明 BOOL 型变量 EtherCAT_INO 和 EtherCAT_OUTO。
- c. 编写 IO 操作代码,如下图 6.17 所示。

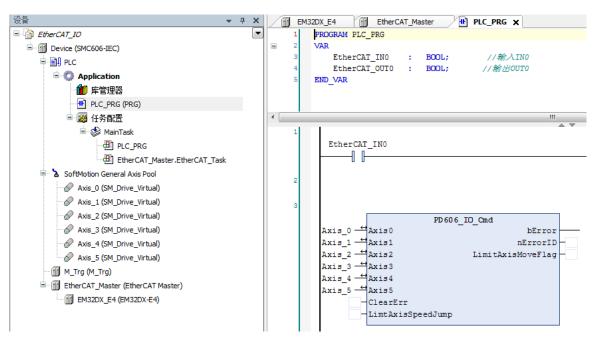
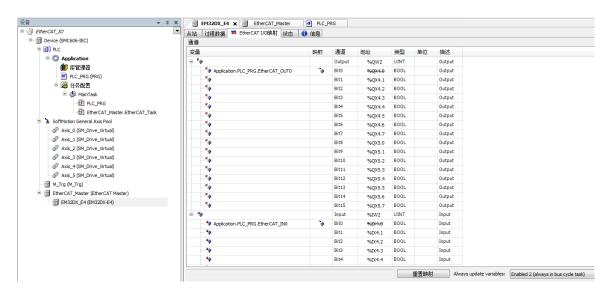



图 6.17 IO 操作代码界面

(5) 配置模块的 EtherCAT I/O 映射:

将程序中申明的变量 EtherCAT_INO 和 EtherCAT_OUTO 配置到 IO 模块的映射表,配置完成后显示的界面如图 6.18 所示:

6.18 配置 IO 映射

(6) 运行程序:

- a. 将模块 INO 端口与 0V 地接通, INO 指示灯亮,OUTO 指示灯也亮。在线监控界面中 EtherCAT_INO 和 EtherCAT_OUTO 值为 TRUE;
 - b. 将 INO 端口与 0V 地断开, INO 指示灯灭, OUTO 指示灯也灭。

6.2 BASIC 示例

6.2.1 硬件连接

雷赛 BAC332E 控制器的外观如下图 6.19 所示:

图 6.19 BAC332E 外观

该控制器采用 24V 直流电源供电,具有 1 路 EtherCAT。

该控制器的 EtherCAT 端口信号如表 6.2 所示:

表 6.2 接口引脚号和信号关系表

EtherCAT 信号	信号描述	说明
1	TX+	发送信号+
2	TX-	发送信号-
3	RX+	接收信号+
4	NC	保留
5	NC	保留
6	RX-	接收信号-
7	NC	保留
8	NC	保留

各端口的详细描述请参考 BAC332E 系列运动控制器用户手册。

设备间的连接: 通过超五类带屏蔽层的网线将 BAC332E 的 EtherCAT 口与 EM32DX-E4 的 EtherCAT IN 口连接。

模块上的拨码开关,采用出厂默认配置。

6.2.2 EtherCAT 主站的添加及配置

打开 SMC BASIC STUDIO 编程软件之后,需要新建一个工程(详细建立工程过程请参考《BAC332E 用户使用手册》)。在该工程中会自动添加 EtherCAT 主站。主站的参数除了通讯周期时间之外,其他的参数不需要用户配置,保持默认即可。连接上控制器之后,在左侧"设备"栏,双击"EtherCAT_0"即可以看到主站的相关信息,如图 6.20 所示:

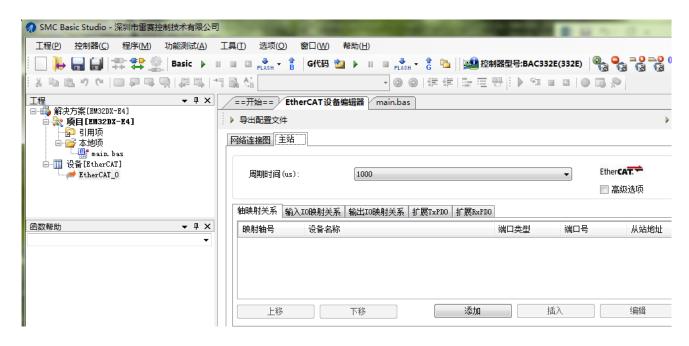


图 6.20 BAC332E 主站界面

6.2.3 模块的添加

在 SMC BASIC STUDIO 编程软件中,可以手动添加从站模块和自动扫描从站模块。在添加从站之前,必须保证设备库中有对应的模块设备描述文件,具体操作请参考《BAC332E 用户使用手册》里"安装设备描述文件"章节。

1) 手动添加

在"工程"栏的目录里,选中主站"EtherCAT_0",然后点击鼠标右键,选择"添加从站"在弹出的窗口中找到对应的设备描述文件,如图 6.21 所示:

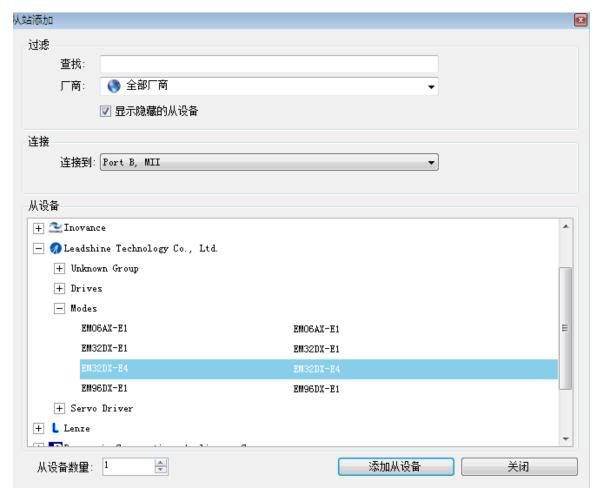


图 6.21 添加从站模块

然后选择"添加从设备",在左侧"工程"目录下可以找到添加成功的模块。

2) 自动扫描

在"工程"栏的目录里,选中主站"EtherCAT_0",然后点击鼠标右键,选择"扫描设备",扫描成功后会提示是否下载对应的配置文件,同时主站目录下会出现扫描到的从站模块,如图 6.22 所示

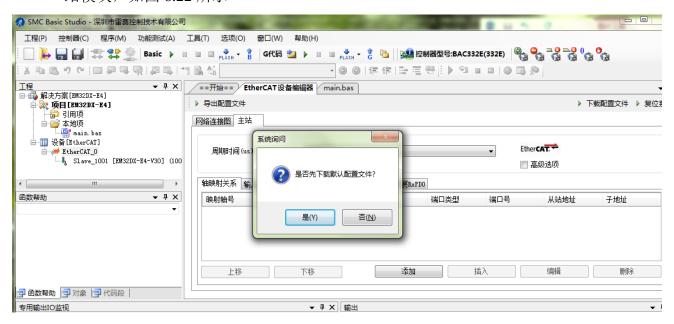


图 6.22 自动扫描设备

选择"是":

下载成功后会重启系统,双击从站 "Slave_1001[EM32DX-E4](1001)" ,可以看到从站模块的信息,如图6.23所示

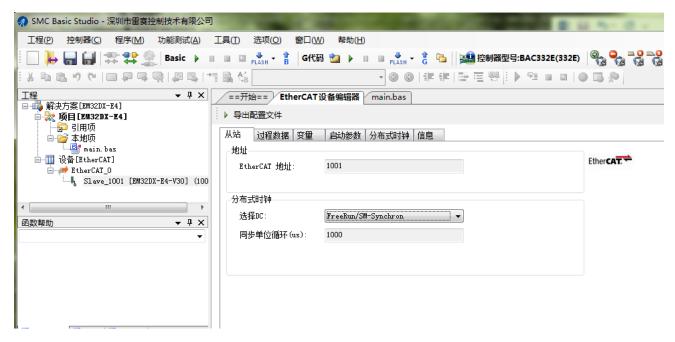


图 6.23 从站模块信息

在EtherCAT设备编辑器中,可以看到从站模块的所有信息,包括从站地址、同步时间周期、PDO、时钟、模块信息等。从站的参数都是系统默认匹配的,不需要用户修改。如下图所示:

图 6.24 从站模块信息

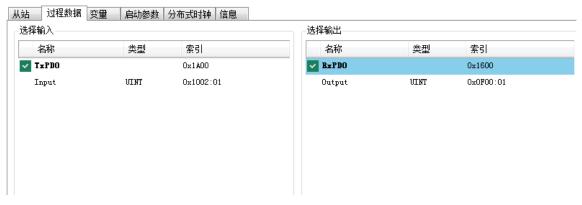


图 6.25 从站模块信息

图 6.26 从站模块信息

图 6.27 从站模块信息

图 6.28 从站模块信息

至此,从站模块的添加已经完成。

6.2.4 模块的配置

双击"工具"栏中的EtherCAT主站 "EtherCAT_0",可以看到EtherCAT主站的包含信息。 在此处将轴映射关系以及IO映射关系显示在此界面,后续程序中使用的轴号以及IO号都以 此做为参考

图 6.29 主站设备信息

由于BAC332E本地有12路输入和12路输出,所以输入端口0-11是BAC332E控制器上的本地输入端口,扩展模块上的输入端口IN0-IN15映射为软件端IN12-IN27.同理输出端口OUT0-OUT11映射为软件端OUT12-OUT27。

6.2.5 应用例程

(1) 程序功能:

在BAC332E控制器上控制扩展模块EM32DX-E4的IN0读取,OUT0输出。

- a. 当 INO 指示灯亮(低电平)时,该模块的 OUTO 指示灯亮(低电平);
- b. 当 IN0 指示灯不亮(高电平)时,该模块的 OUT0 指示灯也不亮(高电平)。

(2) 函数说明

SMCReadInbit

语法: short SMCReadInbit(WORD bitno)

描述: 读取某个输入端口的电平

参数: bitno输入端口号, 取值范围: 0-控制器本机输入口数目-1

返回值: 指定的输入端口电平: 0: 低电平, 导通状态; 1

SMCWriteOutbit

语法: short SMCWriteOutbit(WORD bitno,WORD on_off)

描述: 设置指定控制器的某个输出端口的电平

参数: bitno 输出端口号,取值范围: 0-控制器本机输出口数目-1

on_off 输出电平, 0: 低电平, 1: 高电平

返回值:错误代码

(3) 工程源码:

- 1. auto:
- 2. undim *
- dim modinput
- 4. modinput=12 '输入端口号,扩展模块的第一个输入,对应模块硬件端口号 INO
- 5. dim modoutput
- 6. modoutput=12 '输出端口号,扩展模块的第一个输出,对应模块端口号 OUTO
- 7. dim busstate

8. busstate=1 '总线状态, 只有在总线状态正常的情况下才能操作 9. run 2,reflashstate 10. while true 11. if busstate=0 then '总线正常 if SMCReadInBit(modinput)=0 then 12. SMCWriteOutBit(modoutput,0) 13. 14. else 15. SMCWriteOutBit(modoutput,1) endif 16. 17. else '总线错误 print "总线错误!" 18. endif 19. 20. wend 21. reflashstate: '独立一个任务扫描总线状态 22. while true 23. NMCSGetErrcode(2,busstate) 24. wend

(4) 运行程序:

- a. 将模块 INO 端口与 0V 地接通, INO 指示灯亮,OUTO 指示灯也亮。在线监控界面中 EtherCAT_INO 和 EtherCAT_OUTO 值为 TRUE;
 - b. 将 INO 端口与 0V 地断开, INO 指示灯灭, OUTO 指示灯也灭。

6.3 控制卡示例

6.3.1 硬件连接

此处主站为 DMC-E3032 控制卡,从站为 EM32DX-E4。需要将 DMC-E3032 的 EtherCAT 口和 EM32DX-E4 的 ECAT IN 接口连接起来。

推荐使用超五类屏蔽网线, 抗干扰, 稳定, 可以有效的减少异常错误。

6.3.2 从站 ID 设置

EtherCAT 从站的 ID 由软件分配,无需手动设置。

6.3.3 组建 Ether CAT 网络

建立 EtherCAT 网络是将主站和从站建立连接,便于后期的应用程序控制。在这个过程中,将使用雷赛控制卡调试软件 DMC Motion。具体步骤如下

1) 扫描从站

在 Motion 界面点击"总线配置",在左侧设备目录树中找到 EtherCAT 主站,右键执行"扫描设备"功能。扫描后,总线网络中的所有从站都将排列到总线结构树中。如图 6.30 所示:

图 6.30 扫描从站

- 2) 设置总线周期,下载配置文件,步骤如下:
 - ①、填写通信周期/指令更新周期
 - ②、点击"下载配置文件"。等待配置文件下载成功。
- 3)至此,EtherCAT 网络已经建立完成,EM32DX-E4 模块已经成功添加进 EtherCAT 网络。用户可以编写应用程序来控制模块的 IO。

6.3.4 应用例程

1)程序功能

在 DMC-E3032 控制卡上实现对 EM32DX-E4 模块的输入状态读取和输出控制功能。

2) 函数说明

short dmc_write_outbit(WORD CardNo, WORD bitno, WORD on_off)

功能: 设置指定控制卡的某个输出端口的电平

参数: CardNo控制卡卡号

bitno输出端口号,取值范围: 0~3,如果扩展IO模块,依次往后累加on_off输出电平,0:低电平,1:高电平

返回值:错误代码

short dmc read inbit(WORD CardNo, WORD bitno)

功能: 读取指定控制卡的某个输入端口的电平

参数: CardNo控制卡卡号

bitno输入端口号,取值范围: 0~7,如果扩展IO模块,依次往后累加

返回值: 指定的输入端口电平: 0: 低电平, 1: 高电平

3) 工程源码


```
5. ret = LTDMC.dmc_read_inbit(_CardID, i); //读取 INO - IN15 输入端口状态
6. }
7.
8. for (ushort i = 0; i < 16; i++)
9. {
10. ret = LTDMC.dmc_write_outbit(_CardID, i,0); //输出 OUT0 - OUT15 端口为低电平
11. }
12.
```


深圳市雷赛控制技术有限公司

地 址:深圳市南山区学苑大道 1001 号南山智园 A 3 栋 9 楼

邮 编: 518052

电 话: 0755-26415968

传 真: 0755-26417609

Email: <u>info@szleadtech.com.cn</u>

网 址: http://www.szleadtech.com.cn